

2020 CERTIFICATION

Consumer Confidence Report (CCR)

Back	k Acres
Public	Water System Name

CGGOOGG List PWS ID #s for all Community Water Systems included in this CCR

The Federal Safe Drinking Water Act (SDWA) requires each Community Public Water System (PWS) to develop and distribute a Consumer Confidence Report (CCR) to its customers each year. Depending on the population served by the PWS, this CCR must be mailed or delivered to the customers, published in a newspaper of local circulation, or provided to the customers upon request. Make sure you follow the proper

procedures when distributing the CCR.	
CCR DISTRIBUTION (Check all boxes that apply.)	
INDIRECT DELIVIERY METHODS (Attach copy of publication, water bill or other)	DATE ISSUED
□ Advertisement in local paper (Attach copy of advertisement)	
✓On water bills (Attach copy of bill)	15-85-90
□ Email message (Email the message to the address below)	
□ Other	
DIRECT DELIVERY METHOD (Attach copy of publication, water bill or other)	DVATRIS ISSOCIATED.
□ Distributed via U. S. Postal Mail	
□ Distributed via E-Mail as a URL (Provide Direct URL):	
□ Distributed via E-Mail as an attachment	
□ Distributed via E-Mail as text within the body of email message	
□ Published in local newspaper (attach copy of published CCR or proof of publication)	
□ Posted in public places (attach list of locations)	
□ Posted online at the following address (Provide Direct URL):	
CERTIFICATION I hereby certify that the CCR has been distributed to the customers of this public water system in the form a above and that I used distribution methods allowed by the SDWA. I further certify that the information include and correct and is consistent with the water quality monitoring data provided to the PWS officials by the MS Water Supply. Harry House	ed in this CCR is true
Name Title SUBMISSION OPTIONS (Select one method ONLY)	Date
SUBMISSION OPTIONS (Select offer method Over)	IGUN

You must email, fax (not preferred), or mail a copy of the CCR and Certification to the MSDH.

Mail: (U.S. Postal Service)

MSDH, Bureau of Public Water Supply

P.O. Box 1700

Jackson, MS 39215

Email: water.reports@msdh.ms.gov

Fax: (601) 576-7800

(NOT PREFERRED)

CORRECTED COPY

2020 Quality Water Report Back Acres

[PWS ID# 0690009] June 2021

We're pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is a ground water well that pumps from the Lower Wilcox Aquifer.

Our source water assessment is available upon request.

I'm pleased to report that our drinking water meets all federal and state requirements.

This report shows our water quality and what it means.

If you have any questions about this report or concerning your water utility, please contact Harry House (Certified Water Operator) at P.O. Box 463 Senatobia, MS 38668, 662-562-8456. We want our valued customers to be informed about their water utility.

The Back Acres system routinely monitors for constituents in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2020. As water travels over the land or underground, it can pick up substances or contaminants such as microbes, inorganic and organic chemicals, and radioactive substances. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which

a water system must follow. Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in

drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

TEST								
1015 Cadmium	n	05/13/19	<.000 5	0	ppm	0.005	0.005	Corrosion of galvanized pipes; erosion of natural deposits; discharge from
1020 Chromium	n	05/13/19	.000 5	0	ppm	0.1	0.1	Discharge from steel and pulp mills; erosion of natural deposits
14. Copper	n	12/31/20	0.5	1	mg/l	1.3	AL=1.3	Corrosion of household
1024 Cyanide	n	06/27/16	<.015	0	ppm	0.2	0.2	Discharge from steel/metal factories; discharge from plastic and

16. Fluoride	n	05/13/19	.159	0	ppm	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	n	12/31/20	0.001	0	mg/l	0.015	AL=.015	Corrosion of household plumbing systems, erosion of natural deposits
1041 Nitrite (as	N	05/19/20	<.02	0	Ppm	1	1	Runoff from fertilizer use;
Nitrogen) 1040 Nitrate	n	05/19/2 0	<.08	0	ppm	10	10	leaching from septic tanks, sewage; erosion
1038 Nitrate+Nitrite	n	05/19/20	<0.1	0	ppm -	10	10	Run-off from fertilizer use;
Chlorine	N	2020		0	mg/l	0	MDRL=4	Water additive used to control
Highest QTR RAA			1.0					microbes
MRDL Range		il.	.80- 2.00		ppb	70	70	Your Water
2378 1,2,4-	N	08/29/16	<0.5	٥				
trichlorobenzene 2380 cis-1,2-	N	08/29/16	<0.5	0	ppb	70	70	
dichloroethylene	N	08/29/16	<0.5	ō	ppb	10000	10000	
2955 xylenes,Total		l.		0	ppb	5	5	
2964 dichloromethane	N N	08/29/16 08/29/16	<0.5 <0.5	ő	ppb	600	600	
2968 o- Dichlorobenzen	n	08/29/16	<0.5	0	ppb	75	75	
e 2969 p-	n	08/29/16	<0.5	0	ppb	2	2	
dichlorobenzene 2976 vinyl	n	08/29/16	<0.5			7	7	
chloride		08/29/16		0	ppb	100	100	
2977 1,1- dichloroethylene	n		<0.5	0	ppb			
2979 trans-1,2- dichloroethylene	n	08/29/16	<0.5	0	ppb	5	5	
	n	08/29/16	<0.5	0	ppb	200	200	
2980 1,2- dichloroethane	n	08/29/16	<0.5	0	ppb	5	5	
2981 1,1,1- trichloroethane	n	08/29/16	<0.5	0	ppb	5	5	
2982 carbon tetrachloride	n	08/29/16	<0.5	0	ppb	5	5	
2983 1,2- dichloropropane	" n	08/29/16	<0.5		ppb	5	5	
2984	1	08/29/16	<0.5	0	ppb	5	5	
trichloroethylene 2985 1,1,2-	п		<0.5	0		100	100	
trichloroethane 2987	n n	08/29/16 08/29/16	<0.5 <0.5	0	ppb ppb	5	5	
tetrachloroethyle	l "	08/29/16	<0.5	0	ppb	1000	1000 700	
ne	n n	08/29/16 08/29/16	<0.5	0	ppb	700 100	100	
2989 chlorobenzene	"	50,23,10	1.3					
2990 benzene			1.2					
2991 toluene	n	1	csu		II.	1		

(14) Copper. Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

ADDITIONAL INFORMATION for LEAD

if present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Back Acres is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact (601)576-7582 if you wish to have your water tested.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline. Please call 662-562-8456 if you have questions.

We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

2020 Quality Water Report Back Acres

[PWS ID# 0690009] June 2021

We're pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is a ground water well that pumps from the Lower Wilcox Aquifer.

Our source water assessment is available upon request.

I'm pleased to report that our drinking water meets all federal and state requirements.

This report shows our water quality and what it means.

If you have any questions about this report or concerning your water utility, please contact Harry House (Certified Water Operator) at P.O. Box 463 Senatobia, MS 38668, 662-562-8456. We want our valued customers to be informed about their water utility.

The Back Acres system routinely monitors for constituents in your drinking water according to Federal and State laws. This table shows the results of our monitoring for the period of January 1st to December 31st, 2020. As water travels over the land or underground, it can pick up substances or contaminants such as microbes, inorganic and organic chemicals, and radioactive substances. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

TEST								
16. Fluoride	п	05/13/19	.159	0	ррт	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
17. Lead	л	12/31/20	0.001	0	mg/l	0.015	AL=.015	Corrosion of household plumbing systems, erosion of natural deposits

1041 Nitrite (as Nitrogen)	N	05/19/20	<.02	0	Ppm	1	1	Runoff from fertilizer use; leaching from
1040 Nitrate	n	05/19/2 0	<.08	0	ppm	10	10	septic tanks, sewage; erosion
1038 Nitrate+Nitrite	n	05/19/20	<0.1	0	ppm	10	10	Run-off from fertilizer use;
Chlorine	N	2020		0	mg/l	0	MDRL=4	Water additive used to control
Highest QTR			1.0					microbes
RAA			.80-					Your Water
MRDL Range			2.00		ppb	70	70	Tour water
2378 1,2,4- trichlorobenzene	N	08/29/16	<0.5	0	рро			
2380 cis-1,2-	N	08/29/16	<0.5	0		70	70	
dichloroethylene	"	00/20/10		ő	ppb	10000	10000	
2955	N	08/29/16	<0.5	٠ ا	ppb	_	_	
xylenes,Total				0		5	5	
2964	N	08/29/16	<0.5	0	ppb	600	600	
dichloromethane	N	08/29/16	<0.5	•	bbp	800	000	
2968 o- Dichlorobenzen	n	08/29/16	<0.5	0	ppb	75	75	
e 2969 p-	n	08/29/16	<0.5	0	dqq	2	2	
dichlorobenzene)))	FP-	7	7	
2976 vinyl chloride	n	08/29/16	<0.5	0	ppb	100	100	
2977 1,1- dichloroathylene	п	08/29/16	<0.5	0	ppb	100	100	
2979 trans-1,2- dichloroethylene	n	08/29/16	<0.5	0	ppb	5	5	
	п	08/29/16	<0.5	0	ppb	200	200	
2980 1,2- dichloroethane	n	08/29/16	<0.5	0	ppb	5	5	
2981 1,1,1- trichloroethane	n	08/29/16	<0.5	0	ppb	5	5	
2982 carbon tetrachloride	n	08/29/16	<0.5	0	ррь	5	5	
2983 1,2- dichloropropane	n	08/29/16	<0.5	0	ppb	5	5	
2984 trichloroethylene	n	08/29/16	<0.5 <0.5	0	ррь	5	5	
2985 1,1,2- trichloroethane	n	08/29/16	<0.5	0	ppb	100	100	
trichloroethane 2987	n n	08/29/16	<0.5	0	ppb	5	5	
tetrachloroethyle	'n	08/29/16	<0.5	0	ppb	1000	1000	
ne	n	08/29/16	<0.5	0	ppb	700	700	
2989	ח	08/29/16		ľ	ppb	100	100	
chlorobenzene			1.3	l	ŀ			
2990 benzene			1.2		1			
2991 toluene 2992	n		csu					
	11							

ADDITIONAL INFORMATION for LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Back Acres is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing for \$10 per sample. Please contact (601)576-7582 if you wish to have your water tested.

⁽¹⁴⁾ Copper. Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline.

Please call 662-562-8456 if you have questions.

We ask that all our customers help us protect our water sources, which are the heart of our community, our way

. 50

of life and our children's future.